2000 character limit reached
Fourier Eigenfunctions, Uncertainty Gabor Principle and Isoresolution Wavelets
Published 11 Feb 2015 in math.CA | (1502.03401v3)
Abstract: Shape-invariant signals under Fourier transform are investigated leading to a class of eigenfunctions for the Fourier operator. The classical uncertainty Gabor-Heisenberg principle is revisited and the concept of isoresolution in joint time-frequency analysis is introduced. It is shown that any Fourier eigenfunction achieve isoresolution. It is shown that an isoresolution wavelet can be derived from each known wavelet family by a suitable scaling.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.