Papers
Topics
Authors
Recent
Search
2000 character limit reached

On weak Mellin transforms, second degree characters and the Riemann hypothesis

Published 9 Feb 2015 in math.NT | (1502.02633v1)

Abstract: We say that a function f defined on R or Qp has a well defined weak Mellin transform (or weak zeta integral) if there exists some function $M_f(s)$ so that we have $Mell(\phi \star f,s) = Mell(\phi,s)M_f(s)$ for all test functions $\phi$ in $C_c\infty(R*)$ or $C_c\infty(Q_p*)$. We show that if $f$ is a non degenerate second degree character on R or Qp, as defined by Weil, then the weak Mellin transform of $f$ satisfies a functional equation and cancels only for $\Re(s) = 1/2$. We then show that if $f$ is a non degenerate second degree character defined on the adele ring $A_Q$, the same statement is equivalent to the Riemann hypothesis. Various generalizations are provided.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.