Irreducible Components of Hilbert Schemes of Rational Curves with given Normal Bundle (1502.02521v2)
Abstract: We develop a new general method for computing the decomposition type of the normal bundle to a projective rational curve. This method is then used to detect and explain an example of a Hilbert scheme that parametrizes all the rational curves in $\mathbb{P}s$ with a given decomposition type of the normal bundle and that has exactly two irreducible components. This gives a negative answer to the very old question whether such Hilbert schemes are always irreducible. We also characterize smooth non-degenerate rational curves contained in rational normal scroll surfaces in terms of the splitting type of their restricted tangent bundles, compute their normal bundles and show how to construct these curves as suitable projections of a rational normal curve.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.