Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 200 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 44 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Szegö kernel asymptotics and Morse inequalities on CR manifolds with $S^1$ action (1502.02365v3)

Published 9 Feb 2015 in math.CV and math.DG

Abstract: Let $X$ be a compact connected CR manifold of dimension $2n-1, n\geq 2$. We assume that there is a transversal CR locally free $S1$ action on $X$. Let $Lk$ be the $k$-th power of a rigid CR line bundle $L$ over $X$. Without any assumption on the Levi-form of $X$, we obtain a scaling upper-bound for the partial Szeg\H{o} kernel on $(0,q)$-forms with values in $Lk$. After integration, this gives the weak Morse inequalities. By a refined spectral analysis, we also obtain the strong Morse inequalities in CR setting. We apply the strong Morse inequalities to show that the Grauert-Riemenschneider criterion is also true in the CR setting.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.