Papers
Topics
Authors
Recent
2000 character limit reached

Emergent infinite-randomness fixed points from the extensive random bipartitions of the spin-1 Affleck-Kennedy-Lieb-Tasaki topological state

Published 7 Feb 2015 in cond-mat.str-el and quant-ph | (1502.02095v2)

Abstract: Quantum entanglement under an extensive bipartition can reveal the critical boundary theory of a topological phase in the parameter space. In this study we demonstrate that the infinite-randomness fixed point for spin-1/2 degrees of freedom can emerge from an extensive random bipartition of the spin-1 Affleck-Kennedy-Lieb-Tasaki chain. The nested entanglement entropy of the ground state of the reduced density matrix exhibits a logarithmic scaling with an effective central charge $\tilde{c} = 0.72 \pm 0.02 \approx \ln 2$. We further discuss, in the language of bulk quantum entanglement, how to understand all phase boundaries and the surrounding Griffiths phases for the antiferromagnetic Heisenberg spin-1 chain with quenched disorder and dimerization.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.