Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic Embedding Space for Zero-Shot Action Recognition (1502.01540v1)

Published 5 Feb 2015 in cs.CV

Abstract: The number of categories for action recognition is growing rapidly. It is thus becoming increasingly hard to collect sufficient training data to learn conventional models for each category. This issue may be ameliorated by the increasingly popular 'zero-shot learning' (ZSL) paradigm. In this framework a mapping is constructed between visual features and a human interpretable semantic description of each category, allowing categories to be recognised in the absence of any training data. Existing ZSL studies focus primarily on image data, and attribute-based semantic representations. In this paper, we address zero-shot recognition in contemporary video action recognition tasks, using semantic word vector space as the common space to embed videos and category labels. This is more challenging because the mapping between the semantic space and space-time features of videos containing complex actions is more complex and harder to learn. We demonstrate that a simple self-training and data augmentation strategy can significantly improve the efficacy of this mapping. Experiments on human action datasets including HMDB51 and UCF101 demonstrate that our approach achieves the state-of-the-art zero-shot action recognition performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xun Xu (64 papers)
  2. Timothy Hospedales (101 papers)
  3. Shaogang Gong (94 papers)
Citations (110)

Summary

We haven't generated a summary for this paper yet.