Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Fast Constraint Propagation for Image Segmentation (1502.01475v1)

Published 5 Feb 2015 in cs.CV

Abstract: This paper presents a novel selective constraint propagation method for constrained image segmentation. In the literature, many pairwise constraint propagation methods have been developed to exploit pairwise constraints for cluster analysis. However, since most of these methods have a polynomial time complexity, they are not much suitable for segmentation of images even with a moderate size, which is actually equivalent to cluster analysis with a large data size. Considering the local homogeneousness of a natural image, we choose to perform pairwise constraint propagation only over a selected subset of pixels, but not over the whole image. Such a selective constraint propagation problem is then solved by an efficient graph-based learning algorithm. To further speed up our selective constraint propagation, we also discard those less important propagated constraints during graph-based learning. Finally, the selectively propagated constraints are exploited based on $L_1$-minimization for normalized cuts over the whole image. The experimental results demonstrate the promising performance of the proposed method for segmentation with selectively propagated constraints.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.