Papers
Topics
Authors
Recent
2000 character limit reached

On the partial transpose of fermionic Gaussian states

Published 4 Feb 2015 in cond-mat.stat-mech and quant-ph | (1502.01369v3)

Abstract: We consider Gaussian states of fermionic systems and study the action of the partial transposition on the density matrix. It is shown that, with a suitable choice of basis, these states are transformed into a linear combination of two Gaussian operators that are uniquely defined in terms of the covariance matrix of the original state. In case of a reflection symmetric geometry, this result can be used to efficiently calculate a lower bound for a well-known entanglement measure, the logarithmic negativity. Furthermore, exact expressions can be derived for traces involving integer powers of the partial transpose. The method can also be applied to the quantum Ising chain and the results show perfect agreement with the predictions of conformal field theory.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.