A Multiple-Expert Binarization Framework for Multispectral Images
Abstract: In this work, a multiple-expert binarization framework for multispectral images is proposed. The framework is based on a constrained subspace selection limited to the spectral bands combined with state-of-the-art gray-level binarization methods. The framework uses a binarization wrapper to enhance the performance of the gray-level binarization. Nonlinear preprocessing of the individual spectral bands is used to enhance the textual information. An evolutionary optimizer is considered to obtain the optimal and some suboptimal 3-band subspaces from which an ensemble of experts is then formed. The framework is applied to a ground truth multispectral dataset with promising results. In addition, a generalization to the cross-validation approach is developed that not only evaluates generalizability of the framework, it also provides a practical instance of the selected experts that could be then applied to unseen inputs despite the small size of the given ground truth dataset.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.