Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Partitions into a small number of part sizes (1502.00366v4)

Published 2 Feb 2015 in math.CO

Abstract: We study $\nu_k(n)$, the number of partitions of $n$ into $k$ part sizes, and find numerous arithmetic progressions where $\nu_2$ and $\nu_3$ take on values divisible by 2 and 4. Expanding earlier work, we show $\nu_2(An+B) \equiv 0 \pmod{4}$ for (A,B) = (36,30), (72,42), (252,114), (196,70), and likely many other progressions for which our method should easily generalize. Of some independent interest, we prove that the overpartition function $\bar{p}(n) \equiv 0 \pmod{16}$ in the first three progressions (the fourth is known), and thereby show that $\nu_3(An+B) \equiv 0 \pmod{2}$ in each of these progressions as well, and discuss the relationship between these congruences in more generality. We end with open questions in this area.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.