Varying the direction of propagation in reaction-diffusion equations in periodic media
Abstract: We consider a multidimensional reaction-diffusion equation of either ignition or monostable type, involving periodic heterogeneity, and analyze the dependence of the propagation phenomena on the direction. We prove that the (minimal) speed of the underlying pulsating fronts depends continuously on the direction of propagation, and so does its associated profile provided it is unique up to time shifts. We also prove that the spreading properties \cite{Wein02} are actually uniform with respect to the direction.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.