Papers
Topics
Authors
Recent
2000 character limit reached

Third case of the Cyclic Coloring Conjecture

Published 26 Jan 2015 in math.CO | (1501.06624v4)

Abstract: The Cyclic Coloring Conjecture asserts that the vertices of every plane graph with maximum face size D can be colored using at most 3D/2 colors in such a way that no face is incident with two vertices of the same color. The Cyclic Coloring Conjecture has been proven only for two values of D: the case D=3 is equivalent to the Four Color Theorem and the case D=4 is equivalent to Borodin's Six Color Theorem, which says that every graph that can be drawn in the plane with each edge crossed by at most one other edge is 6-colorable. We prove the case D=6 of the conjecture.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.