Reverse Cheeger inequality for planar convex sets (1501.04520v1)
Abstract: We prove the sharp inequality [ J(\Omega) := \frac{\lambda_1(\Omega)}{h_1(\Omega)2} < \frac{\pi2}{4},] where $\Omega$ is any planar, convex set, $\lambda_1(\Omega)$ is the first eigenvalue of the Laplacian under Dirichlet boundary conditions, and $h_1(\Omega)$ is the Cheeger constant of $\Omega$. The value on the right-hand side is optimal, and any sequence of convex sets with fixed volume and diameter tending to infinity is a maximizing sequence. Morever, we discuss the minimization of $J$ in the same class of subsets: we provide a lower bound which improves the generic bound given by Cheeger's inequality, we show the existence of a minimizer, and we give some optimality conditions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.