An improved Hardy-Trudinger-Moser inequality (1501.03678v2)
Abstract: Let $\mathbb{B}$ be the unit disc in $\mathbb{R}2$, $\mathscr{H}$ be the completion of $C_0\infty(\mathbb{B})$ under the norm $$|u|{\mathscr{H}}=\left(\int\mathbb{B}|\nabla u|2dx-\int_\mathbb{B}\frac{u2}{(1-|x|2)2}dx\right){1/2},\quad\forall u\in C_0\infty(\mathbb{B}).$$ Denote $\lambda_1(\mathbb{B})=\inf_{u\in \mathscr{H},\,|u|2=1}|u|{\mathscr{H}}2$, where $|\cdot|2$ stands for the $L2(\mathbb{B})$-norm. Using blow-up analysis, we prove that for any $\alpha$, $0\leq \alpha<\lambda_1(\mathbb{B})$, $$\sup{u\in\mathscr{H},\,|u|{\mathscr{H}}2-\alpha|u|_22\leq 1}\int\mathbb{B} e{4\pi u2}dx<+\infty,$$ and that the above supremum can be attained by some function $u\in \mathscr{H}$ with $|u|_{\mathscr{H}}2-\alpha|u|_22= 1$. This improves an earlier result of G. Wang and D. Ye [28].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.