Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Promoting Similarity of Sparsity Structures in Integrative Analysis with Penalization (1501.03599v2)

Published 15 Jan 2015 in stat.ME

Abstract: For data with high-dimensional covariates but small to moderate sample sizes, the analysis of single datasets often generates unsatisfactory results. The integrative analysis of multiple independent datasets provides an effective way of pooling information and outperforms single-dataset analysis and some alternative multi-datasets approaches including meta-analysis. Under certain scenarios, multiple datasets are expected to share common important covariates, that is, the multiple models have similarity in sparsity structures. However, the existing methods do not have a mechanism to {\it promote} the similarity of sparsity structures in integrative analysis. In this study, we consider penalized variable selection and estimation in integrative analysis. We develop an $L_0$-penalty based approach, which is the first to explicitly promote the similarity of sparsity structures. Computationally it is realized using a coordinate descent algorithm. Theoretically it has the much desired consistency properties. In simulation, it significantly outperforms the competing alternative when the models in multiple datasets share common important covariates. It has better or similar performance as the alternative when the sparsity structures share no similarity. Thus it provides a "safe" choice for data analysis. Applying the proposed method to three lung cancer datasets with gene expression measurements leads to models with significantly more similar sparsity structures and better prediction performance.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.