Post-Minkowskian Limit and Gravitational Waves solutions of Fourth Order Gravity: a complete study (1501.02187v2)
Abstract: The post-Minkowskian limit and gravitational wave solutions for general fourth-order gravity theories are discussed. Specifically, we consider a Lagrangian with a generic function of curvature invariants $f(R, R_{\alpha\beta}R{\alpha\beta}, R_{\alpha\beta\gamma\delta}R{\alpha\beta\gamma\delta})$. It is well known that when dealing with General Relativity such an approach provides massless spin-two waves as propagating degree of freedom of the gravitational field while this theory implies other additional propagating modes in the gravity spectra. We show that, in general, fourth order gravity, besides the standard massless graviton is characterized by two further massive modes with a finite-distance interaction. We find out the most general gravitational wave solutions in terms of Green functions in vacuum and in presence of matter sources. If an electromagnetic source is chosen, only the modes induced by $R_{\alpha\beta}R{\alpha\beta}$ are present, otherwise, for any $f(R)$ gravity model, we have the complete analogy with tensor modes of General Relativity. Polarizations and helicity states are classified in the hypothesis of plane wave.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.