Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Central Limit Theorem for Adaptative Multilevel Splitting Estimators in an Idealized Setting (1501.01399v1)

Published 7 Jan 2015 in math.PR

Abstract: The Adaptive Multilevel Splitting algorithm is a very powerful and versatile iterative method to estimate the probability of rare events, based on an interacting particle systems. In an other article, in a so-called idealized setting, the authors prove that some associated estimators are unbiased, for each value of the size n of the systems of replicas and of resampling number k. Here we go beyond and prove these estimator's asymptotic normality when h goes to infinity, for any fixed value of k. The main ingredient is the asymptotic analysis of a functional equation on an appropriate characteristic function. Some numerical simulations illustrate the convergence to rely on Gaussian confidence intervals.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.