Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Hypersymplectic structures with torsion on Lie algebroids (1501.00887v2)

Published 5 Jan 2015 in math.DG

Abstract: Hypersymplectic structures with torsion on Lie algebroids are investigated. We show that each hypersymplectic structure with torsion on a Lie algebroid determines three Nijenhuis morphisms. From a contravariant point of view, these structures are twisted Poisson structures. We prove the existence of a one-to-one correspondence between hypersymplectic structures with torsion and hyperk\"{a}hler structures with torsion. We show that given a Lie algebroid with a hypersymplectic structure with torsion, the deformation of the Lie algebroid structure by any of the transition morphisms does not affect the hypersymplectic structure with torsion. We also show that if a triplet of $2$-forms is a hypersymplectic structure with torsion on a Lie algebroid $A$, then the triplet of the inverse bivectors is a hypersymplectic structure with torsion for a certain Lie algebroid structure on the dual $A*$, and conversely. Examples of hypersymplectic structures with torsion are included.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.