Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Normality of Orthogonal and Sympletic Nilpotent Orbit Closures in Positive Characteristic (1501.00249v2)

Published 1 Jan 2015 in math.RT, math.AG, and math.GR

Abstract: In this note we investigate the normality of closures of orthogonal and symplectic nilpotent orbits in positive characteristic. We prove that the closure of such a nilpotent orbit is normal provided that neither type d nor type e minimal irreducible degeneration occurs in the closure, and conversely if the closure is normal, then any type e minimal irreducible degeneration does not occur in it. Here, the minimal irreducible degenerations of a nilpotent orbit are introduced by W. Hesselink in 6. Our result is a weak version in positive characteristic of [11, Theorem 16.2(ii)], one of the main results of [11] over complex numbers.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.