Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Semiparametric Exponential Family Graphical Models (1412.8697v2)

Published 30 Dec 2014 in stat.ML

Abstract: We propose a new class of semiparametric exponential family graphical models for the analysis of high dimensional mixed data. Different from the existing mixed graphical models, we allow the nodewise conditional distributions to be semiparametric generalized linear models with unspecified base measure functions. Thus, one advantage of our method is that it is unnecessary to specify the type of each node and the method is more convenient to apply in practice. Under the proposed model, we consider both problems of parameter estimation and hypothesis testing in high dimensions. In particular, we propose a symmetric pairwise score test for the presence of a single edge in the graph. Compared to the existing methods for hypothesis tests, our approach takes into account of the symmetry of the parameters, such that the inferential results are invariant with respect to the different parametrizations of the same edge. Thorough numerical simulations and a real data example are provided to back up our results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zhuoran Yang (155 papers)
  2. Yang Ning (35 papers)
  3. Han Liu (340 papers)
Citations (32)

Summary

We haven't generated a summary for this paper yet.