Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Condensates and instanton - torus knot duality. Hidden Physics at UV scale (1412.8455v2)

Published 29 Dec 2014 in hep-th

Abstract: We establish the duality between the torus knot superpolynomials or the Poincar\'e polynomials of the Khovanov homology and particular condensates in $\Omega$-deformed 5D supersymmetric QED compactified on a circle with 5d Chern-Simons(CS) term. It is explicitly shown that $n$-instanton contribution to the condensate of the massless flavor in the background of four-observable, exactly coincides with the superpolynomial of the $T(n,nk+1)$ torus knot where $k$ - is the level of CS term. In contrast to the previously known results, the particular torus knot corresponds not to the partition function of the gauge theory but to the particular instanton contribution and summation over the knots has to be performed in order to obtain the complete answer. The instantons are sitting almost at the top of each other and the physics of the "fat point" where the UV degrees of freedom are slaved with point-like instantons turns out to be quite rich. Also also see knot polynomials in the quantum mechanics on the instanton moduli space. We consider the different limits of this correspondence focusing at their physical interpretation and compare the algebraic structures at the both sides of the correspondence. Using the AGT correspondence, we establish a connection between superpolynomials for unknots and q-deformed DOZZ factors.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.