Papers
Topics
Authors
Recent
2000 character limit reached

Bruhat Order in the Full Symmetric $\mathfrak{sl}_n$ Toda Lattice on Partial Flag Space

Published 28 Dec 2014 in nlin.SI, hep-th, math-ph, and math.MP | (1412.8116v2)

Abstract: In our previous paper [Comm. Math. Phys. 330 (2014), 367-399] we described the asymptotic behaviour of trajectories of the full symmetric $\mathfrak{sl}_n$ Toda lattice in the case of distinct eigenvalues of the Lax matrix. It turned out that it is completely determined by the Bruhat order on the permutation group. In the present paper we extend this result to the case when some eigenvalues of the Lax matrix coincide. In that case the trajectories are described in terms of the projection to a partial flag space where the induced dynamical system verifies the same properties as before: we show that when $t\to\pm\infty$ the trajectories of the induced dynamical system converge to a finite set of points in the partial flag space indexed by the Schubert cells so that any two points of this set are connected by a trajectory if and only if the corresponding cells are adjacent. This relation can be explained in terms of the Bruhat order on multiset permutations.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.