Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Efficient particle-based online smoothing in general hidden Markov models: the PaRIS algorithm (1412.7550v1)

Published 23 Dec 2014 in stat.CO

Abstract: This paper presents a novel algorithm, the particle-based, rapid incremental smoother (PaRIS), for efficient online approximation of smoothed expectations of additive state functionals in general hidden Markov models. The algorithm, which has a linear computational complexity under weak assumptions and very limited memory requirements, is furnished with a number of convergence results, including a central limit theorem. An interesting feature of PaRIS, which samples on-the-fly from the retrospective dynamics induced by the particle filter, is that it requires two or more backward draws per particle in order to cope with degeneracy of the sampled trajectories and to stay numerically stable in the long run with an asymptotic variance that grows only linearly with time.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.