Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 88 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 220 tok/s Pro
2000 character limit reached

Maximizing algebraic connectivity for certain families of graphs (1412.6147v1)

Published 17 Dec 2014 in cs.DM, math.CO, and math.SP

Abstract: We investigate the bounds on algebraic connectivity of graphs subject to constraints on the number of edges, vertices, and topology. We show that the algebraic connectivity for any tree on $n$ vertices and with maximum degree $d$ is bounded above by $2(d-2) \frac{1}{n}+O(\frac{\ln n}{n{2}}).$ We then investigate upper bounds on algebraic connectivity for cubic graphs. We show that algebraic connectivity of a cubic graph of girth $g$ is bounded above by $3-2{3/2}\cos(\pi/\lfloor g/2\rfloor) ,$ which is an improvement over the bound found by Nilli [A. Nilli, Electron. J. Combin., 11(9), 2004]. Finally, we propose several conjectures and open questions.

Citations (25)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)