Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimum maximal matchings in cubic graphs (2008.01863v3)

Published 4 Aug 2020 in math.CO and cs.DM

Abstract: We prove that every connected cubic graph with $n$ vertices has a maximal matching of size at most $\frac{5}{12} n+ \frac{1}{2}$. This confirms the cubic case of a conjecture of Baste, F\"urst, Henning, Mohr and Rautenbach (2019) on regular graphs. More generally, we prove that every graph with $n$ vertices and $m$ edges and maximum degree at most $3$ has a maximal matching of size at most $\frac{4n-m}{6}+ \frac{1}{2}$. These bounds are attained by the graph $K_{3,3}$, but asymptotically there may still be some room for improvement. Moreover, the claimed maximal matchings can be found efficiently. As a corollary, we have a $\left(\frac{25}{18} + O \left( \frac{1}{n}\right)\right) $-approximation algorithm for minimum maximal matching in connected cubic graphs.

Citations (3)

Summary

We haven't generated a summary for this paper yet.