2000 character limit reached
The Li-Yau inequality and applications under a curvature-dimension condition (1412.5165v3)
Published 12 Dec 2014 in math.DG, math.AP, math.FA, and math.PR
Abstract: We prove a global Li-Yau inequality for a general Markov semigroup under a curvature-dimension condition. This inequality is stronger than all classical Li-Yau type inequalities known to us. On a Riemannian manifold, it is equivalent to a new parabolic Harnack inequality, both in negative and positive curvature, giving new subsequents bounds on the heat kernel of the semigroup. Under positive curvature we moreover reach ultracontractive bounds by a direct and robust method.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.