Finite-dimensional global attractors for parabolic nonlinear equations with state-dependent delay (1412.4293v1)
Abstract: We deal with a class of parabolic nonlinear evolution equations with state-dependent delay. This class covers several important PDE models arising in biology. We first prove well-posedness in a certain space of functions which are Lipschitz in time. We show that the model considered generates an evolution operator semigroup $S_t$ on a space $CL$ of Lipschitz type functions over delay time interval. The operators $S_t$ are closed for all $t\ge 0$ and continuous for $t$ large enough. Our main result shows that the semigroup $S_t$ possesses compact global and exponential attractors of finite fractal dimension. Our argument is based on the recently developed method of quasi-stability estimates and involves some extension of the theory of global attractors for the case of closed evolutions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.