Papers
Topics
Authors
Recent
2000 character limit reached

Spectral geometry of the Steklov problem

Published 24 Nov 2014 in math.SP, math.AP, and math.DG | (1411.6567v1)

Abstract: The Steklov problem is an eigenvalue problem with the spectral parameter in the boundary conditions, which has various applications. Its spectrum coincides with that of the Dirichlet-to-Neumann operator. Over the past years, there has been a growing interest in the Steklov problem from the viewpoint of spectral geometry. While this problem shares some common properties with its more familiar Dirichlet and Neumann cousins, its eigenvalues and eigenfunctions have a number of distinctive geometric features, which makes the subject especially appealing. In this survey we discuss some recent advances and open questions, particularly in the study of spectral asymptotics, spectral invariants, eigenvalue estimates, and nodal geometry.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.