Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

p-adic q-expansion principles on unitary Shimura varieties (1411.4350v4)

Published 17 Nov 2014 in math.NT

Abstract: We formulate and prove certain vanishing theorems for p-adic automorphic forms on unitary groups of arbitrary signature. The p-adic q-expansion principle for p-adic modular forms on the Igusa tower says that if the coefficients of (sufficiently many of) the q-expansions of a p-adic modular form f are zero, then f vanishes everywhere on the Igusa tower. There is no p-adic q-expansion principle for unitary groups of arbitrary signature in the literature. By replacing q-expansions with Serre-Tate expansions (expansions in terms of Serre-Tate deformation coordinates) and replacing modular forms with automorphic forms on unitary groups of arbitrary signature, we prove an analogue of the p-adic q-expansion principle. More precisely, we show that if the coefficients of (sufficiently many of) the Serre-Tate expansions of a p-adic automorphic form f on the Igusa tower (over a unitary Shimura variety) are zero, then f vanishes identically on the Igusa tower. This paper also contains a substantial expository component. In particular, the expository component serves as a complement to Hida's extensive work on p-adic automorphic forms.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.