Invariants of Random Knots and Links (1411.3308v3)
Abstract: We study random knots and links in R3 using the Petaluma model, which is based on the petal projections developed by Adams et al. (2012). In this model we obtain a formula for the distribution of the linking number of a random two-component link. We also obtain formulas for the expectations and the higher moments of the Casson invariant and the order-3 knot invariant v3. These are the first precise formulas given for the distributions of invariants in any model for random knots or links. We also use numerical computation to compare these to other random knot and link models, such as those based on grid diagrams.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.