Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 28 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Dynamical convexity and elliptic periodic orbits for Reeb flows (1411.2543v3)

Published 10 Nov 2014 in math.SG, math.DG, and math.DS

Abstract: A long-standing conjecture in Hamiltonian Dynamics states that the Reeb flow of any convex hypersurface in $\mathbb{R}{2n}$ carries an elliptic closed orbit. Two important contributions toward its proof were given by Ekeland in 1986 and Dell'Antonio-D'Onofrio-Ekeland in 1995 proving this for convex hypersurfaces satisfying suitable pinching conditions and for antipodal invariant convex hypersurfaces respectively. In this work we present a generalization of these results using contact homology and a notion of dynamical convexity first introduced by Hofer-Wysocki-Zehnder for tight contact forms on $S3$. Applications include geodesic flows under pinching conditions, magnetic flows and toric contact manifolds.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.