Papers
Topics
Authors
Recent
2000 character limit reached

Rate of approximation for multivariate sampling Kantorovich operators on some functions spaces

Published 9 Nov 2014 in math.FA | (1411.2261v1)

Abstract: In this paper, the problem of the order of approximation for the multivariate sampling Kantorovich operators is studied. The cases of the uniform approximation for uniformly continuous and bounded functions/signals belonging to Lipschitz classes and the case of the modular approximation for functions in Orlicz spaces are considered. In the latter context, Lipschitz classes of Zygmund-type which take into account of the modular functional involved are introduced. Applications to Lp(Rn), interpolation and exponential spaces can be deduced from the general theory formulated in the setting of Orlicz spaces. The special cases of multivariate sampling Kantorovich operators based on kernels of the product type and constructed by means of Fejer's and B-spline kernels have been studied in details.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.