Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

The Spaces of Data, Information, and Knowledge (1411.1497v1)

Published 6 Nov 2014 in cs.AI

Abstract: We study the data space $D$ of any given data set $X$ and explain how functions and relations are defined over $D$. From $D$ and for a specific domain $\Delta$ we construct the information space $I$ of $X$ by interpreting variables, functions, and explicit relations over $D$ in $\Delta$ and by including other relations that $D$ implies under the interpretation in $\Delta$. Then from $I$ we build up the knowledge space $K$ of $X$ as the product of two spaces $K_T$ and $K_P$, where $K_T$ is obtained from $I$ by using the induction principle to generalize propositional relations to quantified relations, the deduction principle to generate new relations, and standard mechanisms to validate relations and $K_P$ is the space of specifications of methods with operational instructions which are valid in $K_T$. Through our construction of the three topological spaces the following key observation is made clear: the retrieval of information from the given data set for $\Delta$ consists essentially in mining domain objects and relations, and the discovery of knowledge from the retrieved information consists essentially in applying the induction and deduction principles to generate propositions, synthesizing and modeling the information to generate specifications of methods with operational instructions, and validating the propositions and specifications. Based on this observation, efficient approaches may be designed to discover profound knowledge automatically from simple data, as demonstrated by the result of our study in the case of geometry.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.