Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Correspondence Analysis Platform for Uncovering Deep Structure in Data and Information (0807.0908v2)

Published 6 Jul 2008 in cs.AI

Abstract: We study two aspects of information semantics: (i) the collection of all relationships, (ii) tracking and spotting anomaly and change. The first is implemented by endowing all relevant information spaces with a Euclidean metric in a common projected space. The second is modelled by an induced ultrametric. A very general way to achieve a Euclidean embedding of different information spaces based on cross-tabulation counts (and from other input data formats) is provided by Correspondence Analysis. From there, the induced ultrametric that we are particularly interested in takes a sequential - e.g. temporal - ordering of the data into account. We employ such a perspective to look at narrative, "the flow of thought and the flow of language" (Chafe). In application to policy decision making, we show how we can focus analysis in a small number of dimensions.

Citations (28)

Summary

We haven't generated a summary for this paper yet.