Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Discrete bright solitons in Bose-Einstein condensates and dimensional reduction in quantum field theory (1411.0160v2)

Published 1 Nov 2014 in cond-mat.quant-gas and nlin.PS

Abstract: We first review the derivation of an effective one-dimensional (1D) discrete nonpolynomial Schr\"odinger equation from the continuous 3D Gross-Pitaevskii equation with transverse harmonic confinement and axial periodic potential. Then we study the bright solitons obtained from this discrete nonpolynomial equation showing that they give rise to the collapse of the condensate above a critical attractive strength. We also investigate the dimensional reduction of a bosonic quantum field theory, deriving an effective 1D nonpolynomial Heisenberg equation from the 3D Heisenberg equation of the continuous bosonic field operator under the action of transverse harmonic confinement. Moreover, by taking into account the presence of an axial periodic potential we find a generalized Bose-Hubbard model which reduces to the familiar 1D Bose-Hubbard Hamiltonian only if a strong inequality is satisfied. Remarkably, in the absence of axial periodic potential our 1D nonpolynomial Heisenberg equation gives the generalized Lieb-Liniger theory we obtained some years ago.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.