Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Convergence of Bregman alternating direction method with multipliers for nonconvex composite problems (1410.8625v3)

Published 31 Oct 2014 in math.OC

Abstract: The alternating direction method with multipliers (ADMM) has been one of most powerful and successful methods for solving various convex or nonconvex composite problems that arise in the fields of image & signal processing and machine learning. In convex settings, numerous convergence results have been established for ADMM as well as its varieties. However, due to the absence of convexity, the convergence analysis of nonconvex ADMM is generally very difficult. In this paper we study the Bregman modification of ADMM (BADMM), which includes the conventional ADMM as a special case and often leads to an improvement of the performance of the algorithm. Under certain assumptions, we prove that the iterative sequence generated by BADMM converges to a stationary point of the associated augmented Lagrangian function. The obtained results underline the feasibility of ADMM in applications under nonconvex settings.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.