Papers
Topics
Authors
Recent
2000 character limit reached

Geodesic rigidity of conformal connections on surfaces (1410.8501v2)

Published 30 Oct 2014 in math.DG and math.AG

Abstract: We show that a conformal connection on a closed oriented surface $\Sigma$ of negative Euler characteristic preserves precisely one conformal structure and is furthermore uniquely determined by its unparametrised geodesics. As a corollary it follows that the unparametrised geodesics of a Riemannian metric on $\Sigma$ determine the metric up to constant rescaling. It is also shown that every conformal connection on the $2$-sphere lies in a complex $5$-manifold of conformal connections, all of which share the same unparametrised geodesics.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.