Integral Control on Lie Groups
Abstract: In this paper, we extend the popular integral control technique to systems evolving on Lie groups. More explicitly, we provide an alternative definition of "integral action" for proportional(-derivative)-controlled systems whose configuration evolves on a nonlinear space, where configuration errors cannot be simply added up to compute a definite integral. We then prove that the proposed integral control allows to cancel the drift induced by a constant bias in both first order (velocity) and second order (torque) control inputs for fully actuated systems evolving on abstract Lie groups. We illustrate the approach by 3-dimensional motion control applications.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.