Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Simple CLE in Doubly Connected Domains (1410.6132v2)

Published 22 Oct 2014 in math.PR

Abstract: We study Conformal Loop Ensemble (CLE${\kappa}$) in doubly connected domains: annuli, the punctured disc, and the punctured plane. We restrict attention to CLE${\kappa}$ for which the loops are simple, i.e. $\kappa\in (8/3,4]$. In the paper "Conformal Loop Ensemble" by Sheffield and Werner, simple CLE in the unit disc is introduced and constructed as the collection of outer boundaries of outermost clusters of the Brownian loop soup. For simple CLE in the unit disc, any fixed interior point is almost surely surrounded by some loop of CLE. The gasket of the collection of loops in CLE, i.e. the set of points that are not surrounded by any loop, almost surely has Lebesgue measure zero. In the current paper, simple CLE in an annulus is constructed similarly: it is the collection of outer boundaries of outermost clusters of the Brownian loop soup conditioned on the event that there is no cluster disconnecting the two components of the boundary of the annulus. Simple CLE in the punctured disc can be viewed as simple CLE in the unit disc conditioned on the event that the origin is in the gasket. Simple CLE in the punctured plane can be viewed as simple CLE in the whole plane conditioned on the event that both the origin and infinity are in the gasket. We construct and study these three kinds of CLEs, along with the corresponding exploration processes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.