Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Stability Analysis and Control Synthesis for Dynamical Transportation Networks (1410.5956v2)

Published 22 Oct 2014 in math.OC

Abstract: We study dynamical transportation networks in a framework that includes extensions of the classical Cell Transmission Model to arbitrary network topologies. The dynamics are modeled as systems of ordinary differential equations describing the traffic flow among a finite number of cells interpreted as links of a directed network. Flows between contiguous cells, in particular at junctions, are determined by merging and splitting rules within constraints imposed by the cells' demand and supply functions as well as by the drivers' turning preferences, while inflows at on-ramps are modeled as exogenous and possibly time-varying. First, we analyze stability properties of dynamical transportation networks. We associate to the dynamics a state-dependent dual graph whose connectivity depends on the signs of the derivatives of the inter-cell flows with respect to the densities. Sufficient conditions for the stability of equilibria and periodic solutions are then provided in terms of the connectivity of such dual graph. Then, we consider synthesis of control policies that use a combination of turning preferences, speed limits, and ramp metering, in order to optimize convex objectives. We first show that, in the general case, the optimal control synthesis problem can be cast as a convex optimization problem, and that the equilibrium of the controlled network is in free-flow. If the control policies are restricted to speed limits and ramp metering, then the resulting synthesis problem is still convex for networks where every node is either a merge or a diverge junction, and where the dynamics is monotone. These results apply both to the optimal selection of equilibria and periodic solutions, as well as to finite-horizon network trajectory optimization. Finally, we illustrate our findings through simulations on a road network inspired by the freeway system in southern Los Angeles.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.