Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convex Polygon Containment: Improving Quadratic to Near Linear Time (2403.13292v1)

Published 20 Mar 2024 in cs.CG

Abstract: We revisit a standard polygon containment problem: given a convex $k$-gon $P$ and a convex $n$-gon $Q$ in the plane, find a placement of $P$ inside $Q$ under translation and rotation (if it exists), or more generally, find the largest copy of $P$ inside $Q$ under translation, rotation, and scaling. Previous algorithms by Chazelle (1983), Sharir and Toledo (1994), and Agarwal, Amenta, and Sharir (1998) all required $\Omega(n2)$ time, even in the simplest $k=3$ case. We present a significantly faster new algorithm for $k=3$ achieving $O(n$polylog $n)$ running time. Moreover, we extend the result for general $k$, achieving $O(k{O(1/\varepsilon)}n{1+\varepsilon})$ running time for any $\varepsilon>0$. Along the way, we also prove a new $O(k{O(1)}n$polylog $n)$ bound on the number of similar copies of $P$ inside $Q$ that have 4 vertices of $P$ in contact with the boundary of $Q$ (assuming general position input), disproving a conjecture by Agarwal, Amenta, and Sharir (1998).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. Largest Placement of One Convex Polygon Inside Another. Discret. Comput. Geom., 19(1):95–104, 1998. doi:10.1007/PL00009337.
  2. Motion Planning for a Convex Polygon in a Polygonal Environment. Discret. Comput. Geom., 22(2):201–221, 1999. doi:10.1007/PL00009455.
  3. Geometric Range Searching and Its Relatives. Contemporary Mathematics, 223:1–56, 1999. URL: https://jeffe.cs.illinois.edu/pubs/pdf/survey.pdf.
  4. Davenport-Schinzel Sequences and Their Geometric Applications. In Jörg-Rüdiger Sack and Jorge Urrutia, editors, Handbook of Computational Geometry, pages 1–47. North Holland / Elsevier, 2000. doi:10.1016/B978-044482537-7/50002-4.
  5. Subquadratic Algorithms for Some 3SUM-Hard Geometric Problems in the Algebraic Decision-Tree Model. Comput. Geom., 109:101945, 2023. doi:10.1016/J.COMGEO.2022.101945.
  6. Polygon Placement Under Translation and Rotation. RAIRO Theor. Informatics Appl., 23(1):5–28, 1989. doi:10.1051/ITA/1989230100051.
  7. Henry Spalding Baird. Model-Based Image Matching Using Location. MIT Press, 1984.
  8. Subquadratic Algorithms for Algebraic 3SUM. Discret. Comput. Geom., 61(4):698–734, 2019. Preliminary version in SoCG 2017. doi:10.1007/S00454-018-0040-Y.
  9. Polygon Containment and Translational Min-Hausdorff-Distance Between Segment Sets are 3SUM-Hard. Int. J. Comput. Geom. Appl., 11(4):465–474, 2001. doi:10.1142/S0218195901000596.
  10. Timothy M. Chan. Geometric Applications of a Randomized Optimization Technique. Discret. Comput. Geom., 22(4):547–567, 1999. Preliminary version in SoCG 1998. doi:10.1007/PL00009478.
  11. Timothy M. Chan. More Logarithmic-Factor Speedups for 3SUM, (median, +)-Convolution, and Some Geometric 3SUM-Hard Problems. ACM Trans. Algorithms, 16(1):7:1–7:23, 2020. doi:10.1145/3363541.
  12. Bernard Chazelle. The Polygon Containment Problem. Advances in Computing Research, 1(1):1–33, 1983. URL: https://www.cs.princeton.edu/~chazelle/pubs/PolygContainmentProb.pdf.
  13. A Convex Polygon Among Polygonal Obstacles: Placement and High-Clearance Motion. Comput. Geom., 3:59–89, 1993. doi:10.1016/0925-7721(93)90001-M.
  14. Multiple Translational Containment. Part I: An Approximate Algorithm. Algorithmica, 19(1/2):148–182, 1997. doi:10.1007/PL00014415.
  15. Computational Geometry: Algorithms and Applications. Springer, 3rd edition, 2008. URL: https://www.worldcat.org/oclc/227584184.
  16. Optimal Placement of Convex Polygons to Maximize Point Containment. In Proc. 7th ACM-SIAM Symposium on Discrete Algorithm (SODA), pages 114–121, 1996. URL: http://dl.acm.org/citation.cfm?id=313852.313899.
  17. Largest Similar Copies of Convex Polygons Amidst Polygonal Obstacles. CoRR, abs/2012.06978, 2020. arXiv:2012.06978.
  18. Threesomes, Degenerates, and Love Triangles. J. ACM, 65(4):22:1–22:25, 2018. doi:10.1145/3185378.
  19. Near-Optimal Linear Decision Trees for k𝑘kitalic_k-SUM and Related Problems. J. ACM, 66(3):16:1–16:18, 2019. doi:10.1145/3285953.
  20. Polygon Placement Revisited: (Degree of Freedom + 1)-SUM Hardness and an Improvement via Offline Dynamic Rectangle Union. In Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3181–3201, 2022. doi:10.1137/1.9781611977073.124.
  21. D. T. Lee. Interval, Segment, Range, and Priority Search Trees. In Dinesh P. Mehta and Sartaj Sahni, editors, Handbook of Data Structures and Applications. Chapman and Hall/CRC, 2004. doi:10.1201/9781420035179.CH18.
  22. Largest Triangles in a Polygon. Comput. Geom., 98:101792, 2021. doi:10.1016/J.COMGEO.2021.101792.
  23. Nimrod Megiddo. Applying Parallel Computation Algorithms in the Design of Serial Algorithms. J. ACM, 30(4):852–865, 1983. doi:10.1145/2157.322410.
  24. Victor Milenkovic. Translational Polygon Containment and Minimal Enclosure Using Linear Programming Based Restriction. In Proc. 28th ACM Symposium on Theory of Computing (STOC), pages 109–118, 1996. doi:10.1145/237814.237840.
  25. Victor Milenkovic. Multiple Translational Containment. Part II: Exact Algorithms. Algorithmica, 19(1/2):183–218, 1997. doi:10.1007/PL00014416.
  26. Victor Milenkovic. Rotational Polygon Containment and Minimum Enclosure Using Only Robust 2D Constructions. Comput. Geom., 13(1):3–19, 1999. doi:10.1016/S0925-7721(99)00006-1.
  27. Polygons. In Handbook of Discrete and Computational Geometry, pages 787–810. CRC Press, 2017. URL: http://www.csun.edu/~ctoth/Handbook/chap30.pdf.
  28. Computational Geometry: An Introduction. Texts and Monographs in Computer Science. Springer, 1985. doi:10.1007/978-1-4612-1098-6.
  29. Micha Sharir. A Near-Linear Algorithm for the Planar 2-Center Problem. Discret. Comput. Geom., 18(2):125–134, 1997. Preliminary version in SoCG 1996. doi:10.1007/PL00009311.
  30. External Polygon Containment Problems. Computational Geometry, 4(2):99–118, 1994. Preliminary version in SoCG 1991. doi:10.1016/0925-7721(94)90011-6.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com