Nearly-linear light cones in long-range interacting quantum systems (1410.3466v1)
Abstract: In non-relativistic quantum theories with short-range Hamiltonians, a velocity $v$ can be chosen such that the influence of any local perturbation is approximately confined to within a distance $r$ until a time $t \sim r/v$, thereby defining a linear light cone and giving rise to an emergent notion of locality. In systems with power-law ($1/r{\alpha}$) interactions, when $\alpha$ exceeds the dimension $D$, an analogous bound confines influences to within a distance $r$ only until a time $t\sim(\alpha/v)\log r$, suggesting that the velocity, as calculated from the slope of the light cone, may grow exponentially in time. We rule out this possibility; light cones of power-law interacting systems are algebraic for $\alpha>2D$, becoming linear as $\alpha\rightarrow\infty$. Our results impose strong new constraints on the growth of correlations and the production of entangled states in a variety of rapidly emerging, long-range interacting atomic, molecular, and optical systems.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.