2000 character limit reached
The foliated Lefschetz hyperplane theorem (1410.3043v2)
Published 12 Oct 2014 in math.DG
Abstract: A foliation $(M,\mathcal{F})$ is said to be $2$--calibrated if it admits a closed 2-form $\omega$ making each leaf symplectic. By using approximately holomorphic techniques, a sequence $W_k$ of $2$--calibrated submanifolds of codimension--$2$ can be found for $(M, \mathcal{F}, \omega)$. Our main result says that the Lefschetz hyperplane theorem holds for the pairs $(F, F \cap W_k)$, with $F$ any leaf of $\mathcal{F}$. This is applied to draw important consequences on the transverse geometry of such foliations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.