Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Convergence rate analysis of the forward-Douglas-Rachford splitting scheme (1410.2654v4)

Published 9 Oct 2014 in math.OC

Abstract: Operator splitting schemes are a class of powerful algorithms that solve complicated monotone inclusion and convex optimization problems that are built from many simpler pieces. They give rise to algorithms in which all simple pieces of the decomposition are processed individually. This leads to easily implementable and highly parallelizable or distributed algorithms, which often obtain nearly state-of-the-art performance. In this paper, we analyze the convergence rate of the forward-Douglas-Rachford splitting (FDRS) algorithm, which is a generalization of the forward-backward splitting (FBS) and Douglas-Rachford splitting (DRS) algorithms. Under general convexity assumptions, we derive the ergodic and nonergodic convergence rates of the FDRS algorithm, and show that these rates are the best possible. Under Lipschitz differentiability assumptions, we show that the best iterate of FDRS converges as quickly as the last iterate of the FBS algorithm. Under strong convexity assumptions, we derive convergence rates for a sequence that strongly converges to a minimizer. Under strong convexity and Lipschitz differentiability assumptions, we show that FDRS converges linearly. We also provide examples where the objective is strongly convex, yet FDRS converges arbitrarily slowly. Finally, we relate the FDRS algorithm to a primal-dual forward-backward splitting scheme and clarify its place among existing splitting methods. Our results show that the FDRS algorithm automatically adapts to the regularity of the objective functions and achieves rates that improve upon the sharp worst case rates that hold in the absence of smoothness and strong convexity.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube