Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Quasicircle boundaries and exotic almost-isometries (1409.8607v1)

Published 30 Sep 2014 in math.GT, math.DG, and math.DS

Abstract: We consider properly discontinuous, isometric, convex cocompact actions of surface groups on a CAT(-1) space. We show that the limit set of such an action, equipped with the canonical visual metric, is a (weak) quasicircle in the sense of Falconer and Marsh. It follows that the visual metrics on such limit sets are classified, up to bi-Lipschitz equivalence, by their Hausdorff dimension. This result applies in particular to boundaries at infinity of the universal cover of a locally CAT(-1) surface. We show that any two periodic CAT(-1) metrics on $\mathbb H2$ can be scaled so as to be almost-isometric (though in general, no equivariant almost-isometry exists). We also construct, on each higher genus surface, $k$-dimensional families of equal area Riemannian metrics, with the property that their lifts to the universal covers are pairwise almost-isometric but are not isometric to each other. Finally, we exhibit a gap phenomenon for the optimal multiplicative constant for a quasi-isometry between periodic CAT(-1) metrics on $\mathbb H2$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube