Medical diagnosis as pattern recognition in a framework of information compression by multiple alignment, unification and search
Abstract: This paper describes a novel approach to medical diagnosis based on the SP theory of computing and cognition. The main attractions of this approach are: a format for representing diseases that is simple and intuitive; an ability to cope with errors and uncertainties in diagnostic information; the simplicity of storing statistical information as frequencies of occurrence of diseases; a method for evaluating alternative diagnostic hypotheses that yields true probabilities; and a framework that should facilitate unsupervised learning of medical knowledge and the integration of medical diagnosis with other AI applications.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.