Papers
Topics
Authors
Recent
Search
2000 character limit reached

Geometry of Lie integrability by quadratures

Published 26 Sep 2014 in math-ph, math.CA, math.MP, and nlin.SI | (1409.7549v1)

Abstract: In this paper we extend the Lie theory of integration in two different ways. First we consider a finite dimensional Lie algebra of vector fields and discuss the most general conditions under which the integral curves of one of the fields can be obtained by quadratures in a prescribed way. It turns out that the conditions can be expressed in a purely algebraic way. In a second step we generalize the construction to the case in which we substitute the Lie algebra of vector fields by a module (generalized distribution). We obtain much larger class of integrable systems replacing standard concepts of solvable (or nilpotent) Lie algebra with distributional solvability (nilpotency).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.