Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Causal Graph Justifications of Logic Programs (1409.7281v1)

Published 25 Sep 2014 in cs.AI and cs.LO

Abstract: In this work we propose a multi-valued extension of logic programs under the stable models semantics where each true atom in a model is associated with a set of justifications. These justifications are expressed in terms of causal graphs formed by rule labels and edges that represent their application ordering. For positive programs, we show that the causal justifications obtained for a given atom have a direct correspon- dence to (relevant) syntactic proofs of that atom using the program rules involved in the graphs. The most interesting contribution is that this causal information is obtained in a purely semantic way, by algebraic op- erations (product, sum and application) on a lattice of causal values whose ordering relation expresses when a justification is stronger than another. Finally, for programs with negation, we define the concept of causal stable model by introducing an analogous transformation to Gelfond and Lifschitz's program reduct. As a result, default negation behaves as "absence of proof" and no justification is derived from negative liter

Summary

We haven't generated a summary for this paper yet.