Dominated Splitting, Partial Hyperbolicity and Positive Entropy (1409.6107v2)
Abstract: Let $f:M\rightarrow M$ be a $C1$ diffeomorphism with a dominated splitting on a compact Riemanian manifold $M$ without boundary. We state and prove several sufficient conditions for the topological entropy of $f$ to be positive. The conditions deal with the dynamical behaviour of the (non-necessarily invariant) Lebesgue measure. In particular, if the Lebesgue measure is $\delta$-recurrent then the entropy of $f$ is positive. We give counterexamples showing that these sufficient conditions are not necessary. Finally, in the case of partially hyperbolic diffeomorphisms, we give a positive lower bound for the entropy relating it with the dimension of the unstable and stable sub-bundles.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.