Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multipartite hypergraphs achieving equality in Ryser's conjecture

Published 16 Sep 2014 in math.CO | (1409.4833v2)

Abstract: A famous conjecture of Ryser is that in an $r$-partite hypergraph the covering number is at most $r-1$ times the matching number. If true, this is known to be sharp for $r$ for which there exists a projective plane of order $r-1$. We show that the conjecture, if true, is also sharp for the smallest previously open value, namely $r=7$. For $r\in{6,7}$, we find the minimal number $f(r)$ of edges in an intersecting $r$-partite hypergraph that has covering number at least $r-1$. We find that $f(r)$ is achieved only by linear hypergraphs for $r\le5$, but that this is not the case for $r\in{6,7}$. We also improve the general lower bound on $f(r)$, showing that $f(r)\ge 3.052r+O(1)$. We show that a stronger form of Ryser's conjecture that was used to prove the $r=3$ case fails for all $r>3$. We also prove a fractional version of the following stronger form of Ryser's conjecture: in an $r$-partite hypergraph there exists a set $S$ of size at most $r-1$, contained either in one side of the hypergraph or in an edge, whose removal reduces the matching number by 1.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.