Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 44 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Multipartite hypergraphs achieving equality in Ryser's conjecture (1409.4833v2)

Published 16 Sep 2014 in math.CO

Abstract: A famous conjecture of Ryser is that in an $r$-partite hypergraph the covering number is at most $r-1$ times the matching number. If true, this is known to be sharp for $r$ for which there exists a projective plane of order $r-1$. We show that the conjecture, if true, is also sharp for the smallest previously open value, namely $r=7$. For $r\in{6,7}$, we find the minimal number $f(r)$ of edges in an intersecting $r$-partite hypergraph that has covering number at least $r-1$. We find that $f(r)$ is achieved only by linear hypergraphs for $r\le5$, but that this is not the case for $r\in{6,7}$. We also improve the general lower bound on $f(r)$, showing that $f(r)\ge 3.052r+O(1)$. We show that a stronger form of Ryser's conjecture that was used to prove the $r=3$ case fails for all $r>3$. We also prove a fractional version of the following stronger form of Ryser's conjecture: in an $r$-partite hypergraph there exists a set $S$ of size at most $r-1$, contained either in one side of the hypergraph or in an edge, whose removal reduces the matching number by 1.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.